Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Temporal and spatial patterns of phytoplankton community and their associated influencing factors using canonical correspondence analysis (CCA) were analyzed in the Danjiangkou Reservoir, China. Water quality of the reservoir was also assessed using phytoplankton cell density and biodiversity indices. Results showed that Bacillariophyta and Cyanophyta accounted for 51.08% and 18.39% of all the species, respectively. There was great seasonal variation in phytoplankton assemblage composition, cell density and biodiversity index. In summer, Cyanophyta was dominant and composed of 42.24% of the phytoplankton composition, whereas Bacillariophyta was dominant in spring, summer and winter, and accounted for 77.13%, 61.29% and 50.91% of all species, respectively. The phytoplankton density reached the maximum of 1.76 x 10(6) cells/L in summer, while the lowest value was 2.32 x 10(5) cells/L in autumn. Seasonal variability was the same for the indices of Shannon-Wiener, Simpson and Pielou, and they were 2.08, 0.77, 0.65 in autumn, and decreased to 0.85, 0.32, 0.28 in winter, respectively. Though the spatial variability was not significant in indices H', D, D(m) and J, the difference was significant between the Dan and the Han Reservoirs in terms of phytoplankton composition. The dominant phytoplankton was Bacillariophyta in Dan Reservoir and Cyanophyta in Han Reservoir. The results also indicated that conductivity was the main environmental factor influencing variation in phytoplankton composition except in autumn. The reservoir could be classified as oligotrophication by cell density and the middle level between beta-mesosaprobic zone and oligosaprobic zone using biodiversity indices. The research demonstrated the potential to use phytoplankton community and its biodiversity indices to monitor water quality in the Danjingkou Reservoir.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!