The physical and chemical characteristics were continually monitored during a wind course one time per day, which continued for 10 days, and other water physical and chemical parameters were concomitantly monitored. Organic aggregates (OA) abundance was significantly higher during wind period than calm stage and the maximum of OA abundance, which occurred the same day when wind speed was highest, was 29 times higher than that in the calm stage. Although OA-C, OA-N and OA-P concentration were decreased during wind period, the total C, N and P contend in OA were increased for the increased OA abundance. Additionally, suspended soil (SS), total nitrogen (TN) and total phosphorus (TP) concentration during wind period were significantly higher than that of clam stage, but total dissolved phosphorus (TDP), total dissolved nitrogen (TDN) and soluble reactive phosphorus (SRP) were insignificantly different. During the wind, OA alkaline phosphatase activity (OA-APA) and OA enzymatically hydrolyzable phosphorus (OA-EHP) both increased significantly, which accelerated organic phosphorous mineralization and SRP release. The results indicate that SRP release induced by wind in shallow lakes may comes from suspended matter, especially OA release rather than directly comes from sediment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

physical chemical
12
wind period
12
organic aggregates
8
chemical characteristics
8
calm stage
8
total dissolved
8
srp release
8
wind
7
total
5
[effects wind-induced
4

Similar Publications

Recombinant human growth hormone (rhGH) injections combined with Anastrozole are increasingly used to treat adolescent idiopathic short stature (ISS), warranting further research. This study evaluated their effects on height, growth rate and adverse reactions in 72 adolescents with ISS treated at our hospital from December 2021 to December 2022. Patients were divided into a control group (rhGH alone) and a study group (rhGH + Anastrozole).

View Article and Find Full Text PDF

The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.

View Article and Find Full Text PDF

Dually Fluorinated Unimolecular Micelles for Stable Oxygen-Carrying and Enhanced Photosensitive Efficiency to Boost Photodynamic Therapy against Hypoxic Tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures.

View Article and Find Full Text PDF

Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!