We found that specific nuclear motion along low-frequency modes is effective in coupling electronic states and that this motion prevail in some small molecules. Thus, in direct contradiction to what is expected based on the standard models, the internal conversion process can proceed faster for smaller molecules. Specifically, we focus on the S(2) →S(1) internal conversion in cyclobutanone, cyclopentanone, and cyclohexanone. By means of time-resolved mass spectrometry and photoelectron spectroscopy the relative rate of this transition is determined to be 13:2:1. Remarkably, we observe coherent nuclear motion on the S(2) surface in a ring-puckering mode and motion along this mode in combination with symmetry considerations allow for a consistent explanation of the observed relative time-scales not afforded by only considering the density of vibrational states or other aspects of the standard models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201100929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!