Toll-like receptors 2 and 4 impair insulin-mediated brain activity by interleukin-6 and osteopontin and alter sleep architecture.

FASEB J

Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tuebingen, Otfried-Mueller-Straße 10, D-72076 Tuebingen, Germany.

Published: May 2012

Impaired insulin action in the brain represents an early step in the progression toward type 2 diabetes, and elevated levels of saturated free fatty acids are known to impair insulin action in prediabetic subjects. One potential mediator that links fatty acids to inflammation and insulin resistance is the Toll-like receptor (TLR) family. Therefore, C3H/HeJ/TLR2-KO (TLR2/4-deficient) mice were fed a high-fat diet (HFD), and insulin action in the brain as well as cortical and locomotor activity was analyzed by using telemetric implants. TLR2/4-deficient mice were protected from HFD-induced glucose intolerance and insulin resistance in the brain and displayed an improvement in cortical and locomotor activity that was not observed in C3H/HeJ mice. Sleep recordings revealed a 42% increase in rapid eye movement sleep in the deficient mice during daytime, and these mice spent 41% more time awake during the night period. Treatment of control mice with a neutralizing IL-6 antibody improved insulin action in the brain as well as cortical activity and diminished osteopontin protein to levels of the TLR2/4-deficient mice. Together, our data suggest that the lack of functional TLR2/4 protects mice from a fat-mediated impairment in insulin action, brain activity, locomotion, and sleep architecture by an IL-6/osteopontin-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-191023DOI Listing

Publication Analysis

Top Keywords

insulin action
20
action brain
16
tlr2/4-deficient mice
12
brain activity
8
sleep architecture
8
fatty acids
8
insulin resistance
8
mice
8
brain well
8
well cortical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!