Numerous studies have indicated that each of the seven projections associated with the central pair of microtubules plays a distinct role in regulating eukaryotic ciliary/flagellar motility. Mutants which lack specific projections have distinct motility phenotypes. For example, Chlamydomonas pf6 mutants lack the C1a projection and have twitchy, non-beating flagella. The C1a projection is a complex of proteins including PF6, C1a-86, C1a-34, C1a-32, C1a-18, and calmodulin. To define functional domains within PF6 and to potentially assign functions to specific C1a components, we generated deletion constructs of the PF6 gene and tested for their ability to assemble and rescue motility upon transformation of mutant pf6 cells. Our results demonstrate that domains near the carboxyl-terminus of PF6 are essential for motility and/or assembly of the projection. The amino terminal half of PF6 is not required for C1a assembly; however, this region is important for stability of the C1a-34, C1a-32, and C1a-18 sub-complex and wild-type beat frequency. Analysis of double mutants lacking the amino terminus of PF6 and outer dynein arms reveal that C1a may play a role in modulating both inner and outer dynein arm activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309106PMC
http://dx.doi.org/10.1002/cm.21010DOI Listing

Publication Analysis

Top Keywords

pf6
10
functional domains
8
domains pf6
8
beat frequency
8
mutants lack
8
c1a projection
8
c1a-34 c1a-32
8
c1a-32 c1a-18
8
outer dynein
8
c1a
5

Similar Publications

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

Low Temperature Emissive Cyclometalated Cobalt(III) Complexes.

Inorg Chem

January 2025

Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.

A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.

View Article and Find Full Text PDF

Luminescent Iridium-Terpyridine Complexes with Various Bis-Cyclometalated Ligands.

Molecules

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan.

A series of luminescent bis-cyclometalated iridium complexes with 2,2':6',2″-terpyridine (tpy), [Ir()(tpy)]PF ( = 2-phenylpyridinate (ppy) for ; benzo[h]quinolinate (bzq) for ; 1-phenylisoquinolinate (piq) for ; and 2-phenylbenzothiazolate (pbt) for ), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of - are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of - form intramolecular π-π stacking interactions with a phenyl moiety of ligands. In addition, the pendant pyridine ring in the tpy ligand of forms an intramolecular hydrogen bonding interaction, unlike in -.

View Article and Find Full Text PDF

Structure factor line shape model gives approximate nanoscale size of polar aggregates in pyrrolidinium-based ionic liquids.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA.

Room temperature ionic liquids (RTILs) are interesting due to their myriad uses in fields such as catalysis and electrochemistry. Their properties are intimately related to their structures, yet structural understanding is difficult to achieve. This work presents a derivation of an approximate expression for the radial distribution function, ().

View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!