The identification and detection of mitis group streptococci, which contain Streptococcus pneumoniae, have been hampered by the lack of sensitive and specific assays. In this study, we evaluated several biochemical and molecular assays for the identification of S. pneumoniae and Streptococcus pseudopneumoniae and their distinction from other mitis group streptococci using a collection of 54 isolates obtained by the routine culturing of 53 respiratory specimens from patients with community-acquired pneumonia. The combined results of the biochemical and molecular assays indicated the presence of 23 S. pneumoniae, 2 S. pseudopneumoniae, and 29 other mitis group streptococcal isolates. The tube bile solubility test that is considered gold standard for the identification of S. pneumoniae showed concordant results with optochin susceptibility testing (CO(2) atmosphere) and a real-time multiplex PCR assay targeting the Spn9802 fragment and the autolysin gene. Optochin susceptibility testing upon incubation in an O(2) atmosphere, bile solubility testing by oxgall disk, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and sequence analysis of the tuf and rpoB genes resulted in several false-positive, false-negative, or inconclusive results. The S. pseudopneumoniae isolates could be identified only by molecular assays, and the multiplex real-time PCR assay was concluded to be most convenient for the identification of S. pneumoniae and S. pseudopneumoniae isolates. Using this method, S. pneumoniae and S. pseudopneumoniae DNA could be detected in the respiratory samples from which they were isolated and in an additional 11 samples from which only other streptococci were isolated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318541 | PMC |
http://dx.doi.org/10.1128/JCM.06609-11 | DOI Listing |
Expert Rev Proteomics
January 2025
Skolkovo Institute of Science and Technology, Moscow, Russian Federation.
Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.
View Article and Find Full Text PDFMediators Inflamm
December 2024
Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.
View Article and Find Full Text PDFUterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions.
View Article and Find Full Text PDFMitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g., BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological forms of apoptosis.
View Article and Find Full Text PDFHIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!