Hyperglycemia alters the tight control of intracellular calcium dynamics in retinal cells and may lead to the development of diabetic retinopathy. The potassium channel interacting protein 3 (KChIP3) also known as DREAM (Downstream Regulatory Element Antagonist Modulator) or calsenilin (KChIP3/DREAM/calsenilin), a member of the neuronal calcium sensor protein family, is expressed in Müller glial cells and upregulated under high glucose experimental culture conditions. Here, we analyzed the expression and function of KChIP3 in the retina of streptozotocin induced diabetic Long Evans rats by immunofluorescence confocal microscopy, western blot, co-immunoprecipitation, whole cell patch clamp recording on isolated cells and KChIP3 gene silencing by RNA interference. Three weeks after streptozotocin application, KChIP3 was increased throughout the different retinal layers and this process was not linked to augmented apoptosis. KChIP3 co-immunoprecipitated with voltage gated K(+) channels of the K(V)4.2-4.3 subtype in retinal extracts from control and hyperglycemic rats. Electrophysiological analysis showed that control cells did not express A type (K(V)4-mediated) K(+) currents but most of the cells from streptozotocin treated retinas displayed macroscopic currents with an inactivating component sensitive to 4-AP, suggesting the persistence of the A type currents at early times after treatment. siRNA analysis in Müller cells cultures grown under high glucose experimental conditions corroborated that, when the expression of KChIP3 is 50% reduced, the number of cells expressing A type currents decreases significantly. Together these data suggest an altered expression and function of KChIP3 after streptozotocin induced hyperglycemia that might help explain some pathological alterations in early diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2012.01.048 | DOI Listing |
Talanta
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:
An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France.
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China. Electronic address:
Wearable sensors can easily enable real-time and noninvasive glucose (Glu) monitoring, providing vital information for effectively preventing various complications caused by high glucose level. Here, a wearable sensor based on nanozyme-catalyzed cascade reactions is designed for Glu monitoring in sweat. Au nanoparticles (AuNPs) are anchored to the carbonated zeolitic imidazolate framework-8 (ZIF-8-C), endowing the sensor with Glu oxidase (GOx)-like and peroxidase (POD)-like activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!