A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer simulations of dynamic crossover phenomena in nanoconfined water. | LitMetric

Computer simulations of dynamic crossover phenomena in nanoconfined water.

J Phys Condens Matter

Dipartimento di Chimica, Università di Sassari and INSTM, Unità di Ricerca di Sassari, Via Vienna 2, I-07100 Sassari, Italy.

Published: February 2012

In order to study dynamic crossover phenomena in nanoconfined water we performed a series of molecular dynamics (MD) computer simulations of water clusters adsorbed in zeolites, which are microporous crystalline aluminosilicates containing channels and cavities of nanometric dimensions. We used a sophisticated empirical potential for water, including the full flexibility of the molecule and the correct response to the electric field generated by the cations and by the charged atoms of the aluminosilicate framework. In addition, the full flexibility of the aluminosilicate framework was included in the calculations. Previously reported and new simulations of water confined in a number of different types of zeolites in the temperature range 100-300 K and at various coverage are discussed in connection with the experimental data. Dynamic crossover phenomena are found in all the considered cases, in spite of the different shape and size of the clusters, even when the confinement hinders the formation of tetrahedral hydrogen bonds for water molecules. Hypotheses about the possible dynamic crossover mechanisms are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/6/064110DOI Listing

Publication Analysis

Top Keywords

dynamic crossover
16
crossover phenomena
12
computer simulations
8
phenomena nanoconfined
8
nanoconfined water
8
simulations water
8
full flexibility
8
aluminosilicate framework
8
water
6
dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!