Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM).

J Hazard Mater

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.

Published: March 2012

AI Article Synopsis

  • A novel adsorbent called lipoid adsorption material (LAM) was created, combining a hydrophobic nucleus (triolein) and a hydrophilic membrane (polyamide) to effectively remove nitrobenzene from water.
  • LAM was tested against granular activated carbon (GAC) and showed superior adsorption behavior, described by a linear isotherm, while GAC followed the Freundlich model.
  • The pseudo-first-order kinetic model best represented the adsorption process for LAM, achieving a 94.3% removal efficiency in 8 hours at a concentration of 200 μg l(-1), compared to GAC's 91.9% in 12 hours.

Article Abstract

In this study, a novel adsorbent referred to as a lipoid adsorption material (LAM) was synthesized with a hydrophobic nucleolus (triolein) and hydrophilic membrane structure (polyamide). The LAM was applied to the adsorption and removal of nitrobenzene from aqueous systems. Experiments were carried out to investigate the adsorption behavior of nitrobenzene on LAM, including the development of adsorption isotherms, the determination of adsorption kinetics, and to explore the influence of adsorbent dosage, contact time, temperature and the initial concentration of nitrobenzene on adsorption. The performance of LAM was compared with equal amounts of granular activated carbon (GAC) for adsorption. The adsorption isotherms for LAM were found to be described by the Linear equation, while the adsorption isotherms for granular activated carbon (GAC) were described by the Freundlich equation. Results indicated that the adsorption of nitrobenzene by LAM occurred mainly due to the partition function caused by the triolein nucleolus. Two kinetics models, pseudo-first-order and pseudo-second-order models were used to fit the experimental data for LAM adsorption. By comparing the correlation coefficients, it was found that the pseudo-first-order model was most suitable to describe the adsorption of nitrobenzene on LAM. The results also indicated that the factors that affect the adsorption rate would be either the nitrobenzene concentration or the character of the adsorbent. Thermodynamic calculations indicated that the adsorption of nitrobenzene on LAM was spontaneous and was an exothermic reaction. With an initial nitrobenzene concentration of 200 μg l(-1), an equilibrium concentration was reached within 8h using LAM as an adsorbent and the average removal efficiency was 94.3%. For GAC, the adsorption equilibrium was achieved after 12h with a 91.9% nitrobenzene removal efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.01.014DOI Listing

Publication Analysis

Top Keywords

adsorption
16
nitrobenzene lam
16
adsorption isotherms
12
adsorption nitrobenzene
12
lam
11
nitrobenzene
9
removal nitrobenzene
8
nitrobenzene aqueous
8
lipoid adsorption
8
adsorption material
8

Similar Publications

This study investigates the functionalization of gold-coated magnetoelastic sensors with thionine molecules, focusing on resonance frequency shifts. The functionalization process was characterized by using Raman spectroscopy and analyzed via scanning electron microscopy and atomic force microscopy, revealing the progressive formation of molecular clusters over time. Our results demonstrate that longer functionalization time leads to saturation of surface coverage and cluster formation, impacting the sensor's resonance frequency shifts.

View Article and Find Full Text PDF

Aflatoxin is a mycotoxin produced by fungi of the genus Aspergillus that is present in various foods. Probiotics are well-established products in aquaculture, and due to their effective contribution to the intestine, they can be used as an aflatoxin adsorbent. This study evaluated the effects of aflatoxin B1 (AFB1) on enzymatic activity and intestinal function in Piaractus mesopotamicus (pacu) fingerlings fed diets containing a probiotic-based adsorbent (PBA).

View Article and Find Full Text PDF

Spontaneous adsorption of iridium chloride complex on oxychloride photocatalysts provides efficient and durable reaction site for water oxidation.

Chem Commun (Camb)

January 2025

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

The visible-light-driven O evolution on oxychloride photocatalysts, such as BiNbOCl, was significantly enhanced by stirring in an aqueous solution containing IrCl in the dark. Various characterizations indicated that highly dispersed IrOHCl-like species spontaneously formed on the oxychloride surface, serving as effective and stable cocatalysts for enhancing O evolution.

View Article and Find Full Text PDF

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!