Benzo[a]pyrene induced lipid changes in the monoxenic arbuscular mycorrhizal chicory roots.

J Hazard Mater

Univ Lille Nord de France, F-59000 Lille, Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, F-62228 Calais, France.

Published: March 2012

Arbuscular mycorrhizal (AM) colonization may be one of the means that protects plants and allows them to thrive on polycyclic aromatic hydrocarbon-polluted soils including the carcinogenic benzo(a)pyrene (B[a]P). To understand the mechanisms involved in the AM symbiosis tolerance to B[a]P toxicity, the purpose of this study was to compare the lipid compositions as well as the contents between mycorrhizal and non-mycorrhizal chicory root cultures grown in vitro under B[a]P pollution. Firstly, B[a]P induced significant decreases of the Glomalean lipid markers: C16:1ω5 and 24-methyl/methylene sterol amounts in AM roots indicating a reduced AM fungal development inside the roots. Secondly, whereas increases in fatty acid amounts after B[a]P application were measured in non-mycorrhizal roots, no changes were shown in mycorrhizal roots. On the other hand, while, after treatment with B[a]P, the total phospholipid contents were unmodified in non-mycorrhizal roots in comparison with the control, drastic reductions were observed in mycorrhizal roots, mainly owing to decreases in phosphatidylethanolamine and phosphatidylcholine. Moreover, B[a]P affected AM root sterols by reducing stigmasterol. In conclusion, the findings presented in this paper have highlighted, for the first time, significant changes in the AM root lipid metabolism under B[a]P pollution and have culminated on their role in the defense/protection mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2011.12.044DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
b[a]p
8
b[a]p pollution
8
non-mycorrhizal roots
8
mycorrhizal roots
8
roots
7
mycorrhizal
5
benzo[a]pyrene induced
4
lipid
4
induced lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!