Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors.

Water Sci Technol

Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.

Published: April 2012

AI Article Synopsis

Article Abstract

This paper demonstrates the potential for recovering dissolved methane from low temperature anaerobic processes treating domestic wastewater. In the absence of methane recovery, ca. 45% of the produced methane is released as a fugitive emission which results in a net carbon footprint of -0.47 kg CO(2e) m(-3). A poly-di-methyl-siloxane (PDMS) membrane contactor was applied to support sweep gas desorption of dissolved methane using nitrogen. The dense membrane structure controlled gaseous mass transfer thus recovery was maximised at low liquid velocities. At the lowest liquid velocity, V(L), of 0.0025 m s(-1), 72% of the dissolved methane was recovered. A vacuum was also trialled as an alternative to sweep-gas operation. At vacuum pressures below 30 mbar, reasonable methane recovery was observed at an intermediate V(L) of 0.0056 m s(-1). Results from this study demonstrate that dissolved methane recovery could increase net electrical production from low temperature anaerobic processes by ca. +0.043 kWh(e) m(-3) and reduce the net carbon footprint to +0.01 kg CO(2e) m(-3). However, further experimental work to optimise the gas-side hydrodynamics is required as well as validation of the long-term impacts of biofouling on process performance.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2012.897DOI Listing

Publication Analysis

Top Keywords

dissolved methane
16
methane recovery
12
low temperature
8
temperature anaerobic
8
anaerobic processes
8
net carbon
8
carbon footprint
8
co2e m-3
8
methane
7
recovery
5

Similar Publications

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Wetlands, as crucial terrestrial carbon reservoirs, have recently suffered severe degradation due to intense human activities. Lacustrine sediments serve as vital indicators for understanding wetland environmental changes. In the current paper, porewater samples were extracted from lacustrine sediment in three boreholes with a depth of ~75 cm in the Huixian karst wetland, southwest China, to study the chemical and dissolved inorganic carbon (DIC) evolution under anthropogenic influence.

View Article and Find Full Text PDF

Airborne observations reveal the fate of the methane from the Nord Stream pipelines.

Nat Commun

January 2025

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

The Nord Stream pipeline leaks on 26 September 2022 released 465 ± 20 kt of methane into the atmosphere, which is the largest recorded transient anthropogenic methane emission event. While most of the gas escaped directly to the atmosphere, a fraction dissolved in the water. So far, studies on the fate of this dissolved methane rely on pipeline volumetric estimates or spatially sparse concentration measurements and ocean models.

View Article and Find Full Text PDF

A suspected 443-486 kt of methane escaped from the Nord Stream pipelines in September 2022 at four explosion sites across three pipelines. Much of this methane rapidly escaped to the atmosphere, while an unknown amount was dissolved. We use sustained high-resolution observations of methane concentrations from autonomous gliders and an instrumented ship of opportunity to reveal the timing and spread of dissolved methane across different Baltic regions and marine protected areas.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!