Pradofloxacin (PRA), a novel veterinary 8-cyano-fluoroquinolone (FQ), is active against Staphylococcus pseudintermedius, the primary cause of canine pyoderma. An in vitro pharmacokinetic-pharmacodynamic model was used to compare the activities of PRA and marbofloxacin (MAR) against three clinical isolates of S. pseudintermedius and reference strain Staphylococcus aureus ATCC 6538. Experiments were performed involving populations of 10(10) CFU corresponding to an inoculum density of approximately 5 × 10(7) CFU/mL. The time course of free drug concentrations in canine serum was modelled, resulting from once daily standard oral dosing of 3 mg of PRA/kg and 2 mg of MAR/kg. In addition, experimentally high doses of 6 mg of PRA/kg and 16 mg of MAR/kg were tested against the least susceptible strain. Viable counts were monitored over 24 h. At concentrations associated with standard doses, PRA caused a faster and more sustained killing than MAR of all strains. The ratios of free drug under the concentration-time curve for 24 h over MIC and the maximum concentration of free drug over MIC were at least 90 and 26, and 8.5 and 2.1 for PRA and MAR, respectively. At experimentally high doses, PRA was superior to MAR in terms of immediate killing. Subpopulations with reduced susceptibility to either FQ did not emerge. We conclude that PRA is likely to be an efficacious therapy of canine staphylococcal infections.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2885.2011.01361.xDOI Listing

Publication Analysis

Top Keywords

free drug
12
pharmacokinetic-pharmacodynamic model
8
pra/kg mar/kg
8
experimentally high
8
high doses
8
doses pra
8
pra
6
comparative activity
4
activity pradofloxacin
4
pradofloxacin marbofloxacin
4

Similar Publications

Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands.

J Chem Inf Model

January 2025

Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.

Article Synopsis
  • Predicting how well ligands bind to nucleic acids is challenging, which limits the development of small-molecule drugs for diseases like cancer and infections.
  • Recent advancements in computational methods, particularly free-energy perturbation (FEP), have improved predictions for protein-ligand binding affinities, but its effectiveness for nucleic acids was unclear.
  • This study found that using FEP+ software with the OPLS4 force field can accurately predict binding energies for over 100 ligands interacting with DNA/RNA, achieving predictions that closely match experimental data and could aid drug discovery.
View Article and Find Full Text PDF

Retrosynthesis is a strategy to analyze the synthetic routes for target molecules in medicinal chemistry. However, traditional retrosynthesis predictions performed by chemists and rule-based expert systems struggle to adapt to the vast chemical space of real-world scenarios. Artificial intelligence (AI) has revolutionized retrosynthesis prediction in recent decades, significantly increasing the accuracy and diversity of predictions for target compounds.

View Article and Find Full Text PDF

Importance: Triple-negative breast cancer is an aggressive subtype with a high incidence in young patients, a high incidence in non-Hispanic Black women, and a high risk of progression to metastatic cancer, a devastating sequela with a 12- to 18-month life expectancy. Until recently, one strategy for treating early-stage triple-negative breast cancer was chemotherapy after surgery. However, it was not known whether the addition of immune therapy to postsurgery chemotherapy would be beneficial.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) combined with anti-vascular endothelial growth factor (VEGF) have been the standard first-line treatment of hepatocellular carcinoma (HCC). However, the efficacy of this combination in post-line treatment is still unknown. This study aimed to evaluate the efficacy and safety of the combination of anti-PD-L1 envafolimab and novel humanized anti-VEGF suvemcitug as second-line treatment for patients with HCC.

View Article and Find Full Text PDF

Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!