N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration.

J Cell Sci

Institut Pasteur-CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris CEDEX 15, France.

Published: February 2012

Perturbation of cell polarity is a hallmark of cancer cells. In carcinomas, loss of epithelial E-cadherin contributes to the loss of cell polarity and promotes epithelial-mesenchymal transition and carcinoma infiltration. However, the contribution of classical cadherins to the development of non-epithelial tumours is less well documented. We investigated the impact of the level of N-cadherin expression on the polarity and migration of normal and tumour glial cells. Low levels of N-cadherin were frequently observed in human glioma samples and purified glioma cells. Using a wound-healing assay, we show that a decreased level of N-cadherin promotes a faster and less-directed migration both in normal and tumour cells. N-cadherin-mediated contacts control cell velocity and polarity through the regulation of focal adhesions. In cells expressing low levels of N-cadherin, small focal adhesions are present at the entire cell periphery of confluent cells and are not affected by wounding of the cell monolayer. Under these conditions, wound-induced integrin-mediated recruitment of the small GTPase Cdc42, activation of the Cdc42-mediated polarity pathway and centrosome reorientation do not occur. Re-expression of N-cadherin in gliomas restores cell polarity and strongly reduces cell velocity, suggesting that loss of N-cadherin could contribute to the invasive capacity of tumour astrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.087668DOI Listing

Publication Analysis

Top Keywords

cell polarity
12
n-cadherin expression
8
cell
8
level n-cadherin
8
migration normal
8
normal tumour
8
low levels
8
levels n-cadherin
8
cell velocity
8
focal adhesions
8

Similar Publications

Activation of caged functional RNAs by an oxidative transformation.

Chembiochem

December 2024

University of Minnesota, Department of Genetics, Cell Biology, and Development, MCB 5-130, 420 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment.

View Article and Find Full Text PDF

Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized and characterized for their optoelectronic properties. The introduction of carbonyl groups increased the reduction potential of the BODIPY core by 0.15-0.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice.

View Article and Find Full Text PDF

Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms.

Bioessays

December 2024

Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!