A series of 6π-electron 4-center species, E(2)N(2) and E(4)(2+) (E=S, Se, Te) is studied by means of ab initio valence bond methods with the aims of settling some controversies on 1) the diradical character of these molecules and 2) the radical sites, E or N, of the preferred diradical structure. It was found that for all molecules, the cumulated weights of the two possible diradical structures are always important and close to 50 %, making these molecules comparable to ozone in terms of diradical character. While the two diradical structures are degenerate in the E(4)(2+) dications, they have on the contrary strongly unequal weights in the E(2)N(2) neutral molecules. In these three molecules, the electronic structure is dominated by one diradical structure, in which the radical sites are the two nitrogen atoms, while the other diradical structure is much less important. The ordering of the various VB structures in terms of their calculated weights is confirmed by the relative energies of individual VB structures. In all cases, the major diradical structure (or both diradical structures when they are degenerate) is (are) the lowest one(s), while the covalent VB structures lie higher in energy. The vertical resonance energies are considerable in S(2)N(2) and S(4)(2+), about 80 % of the estimated value for benzene, and diminish as one goes down the periodic table (S→Se→Te). This confirms the aromatic character of these species, as already demonstrated for S(2)N(2) on the basis of magnetic criteria. This and the high weights and stabilities of one or both diradical structures in all systems indicates that aromaticity and diradical character do not exclude each other, contrary to what is usually claimed. Furthermore, it is shown that the diradical structures find their place in a collective electron flow responsible for the ring currents in the π system of these species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201100959DOI Listing

Publication Analysis

Top Keywords

diradical structures
20
diradical structure
16
diradical
13
diradical character
12
initio valence
8
valence bond
8
e2n2 e42+
8
e42+ e=s
8
radical sites
8
structures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!