The optical transfer function of a cubic phase mask wavefront coding imaging system is experimentally measured across the entire range of defocus values encompassing the system's functional limits. The results are compared against mathematical expressions describing the spatial frequency response of these computational imagers. Experimental data shows that the observed modulation and phase transfer functions, available spatial frequency bandwidth and design range of this imaging system strongly agree with previously published mathematical analyses. An imaging system characterization application is also presented wherein it is shown that the phase transfer function is more robust than the modulation transfer function in estimating the strength of the cubic phase mask.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.001878DOI Listing

Publication Analysis

Top Keywords

spatial frequency
12
cubic phase
12
phase mask
12
transfer function
12
imaging system
12
frequency response
8
mask wavefront
8
wavefront coding
8
coding imaging
8
phase transfer
8

Similar Publications

In a visual inverted pendulum balancing task avoiding impending falls gets harder as we age.

Exp Brain Res

January 2025

Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS 033, 415 South Street, Waltham, MA, 02453, USA.

Younger adults (YA) and older adults (OA) used a joystick to stabilize an unstable visual inverted pendulum (VIP) with a fundamental frequency (.27 Hz) of half that of bipedal human sway. Their task was to keep the VIP upright and to avoid ± 60° "fall" boundaries.

View Article and Find Full Text PDF

Resolving tissue complexity by multimodal spatial omics modeling with MISO.

Nat Methods

January 2025

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.

View Article and Find Full Text PDF

BMA-Net: A 3D bidirectional multi-scale feature aggregation network for prostate region segmentation.

Comput Methods Programs Biomed

January 2025

Guizhou Province International Science and Technology Cooperation Base for Precision Imaging Diagnosis and Treatment, Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Department of Radiology, Guizhou Provincial People's Hospital, Guizhou 550002, China. Electronic address:

Background And Objective: Accurate segmentation of the prostate region in magnetic resonance imaging (MRI) is crucial for prostate-related diagnoses. Recent studies have incorporated Transformers into prostate region segmentation to better capture long-range global feature representations. However, due to the computational complexity of Transformers, these studies have been limited to processing single slices.

View Article and Find Full Text PDF

This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.

View Article and Find Full Text PDF

Observation of momentum-gap topology of light at temporal interfaces in a time-synthetic lattice.

Nat Commun

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.

Topological phases have prevailed across diverse disciplines, spanning electronics, photonics, and acoustics. Hitherto, the understanding of these phases has centred on energy (frequency) bandstructures, showcasing topological boundary states at spatial interfaces. Recent strides have uncovered a unique category of bandstructures characterised by gaps in momentum, referred to as momentum bandgaps or k gaps, notably driven by breakthroughs in photonic time crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!