Estimation of multiple phases from a single fringe pattern in digital holographic interferometry.

Opt Express

Applied Computing and Mechanics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Published: January 2012

Simultaneous measurement of multidimensional displacements using digital holographic interferometry involves multi-directional illumination of the deformed object and requires the reliable estimation of the resulting multiple interference phase distributions. The paper introduces an elegant method to simultaneously estimate the desired multiple phases from a single fringe pattern. The proposed method relies on modeling the reconstructed interference field as a piecewise multicomponent polynomial phase signal. Effectively, in a given region or segment, the reconstructed interference field is represented as the sum of different components i.e. complex signals with polynomial phases. The corresponding polynomial coefficients are estimated using the product high-order ambiguity function. To ensure proper matching of the estimated coefficients with the corresponding components, an amplitude based discrimination criterion is used. The main advantage of the proposed method is direct retrieval of multiple phases without the application of spatial carrier based filtering operations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.001281DOI Listing

Publication Analysis

Top Keywords

multiple phases
12
estimation multiple
8
phases single
8
single fringe
8
fringe pattern
8
digital holographic
8
holographic interferometry
8
proposed method
8
reconstructed interference
8
interference field
8

Similar Publications

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Trivalent recombinant protein vaccine induces cross-neutralization against XBB lineage and JN.1 subvariants: preclinical and phase 1 clinical trials.

Nat Commun

December 2024

Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.

View Article and Find Full Text PDF

Bridged emulsion gels from polymer-nanoparticle enabling large-amount biomedical encapsulation and functionalization.

Nat Commun

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.

View Article and Find Full Text PDF

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

Background: Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

Methods: We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!