Entangled photon polarimetry.

Opt Express

Center for Photonic Communication and Computing, EECS Department Northwestern University, Evanston, IL 60208 USA.

Published: December 2011

We construct an entangled photon polarimeter capable of monitoring a two-qubit quantum state in real time. Using this polarimeter, we record a nine frames-per-second video of a two-photon state's transition from separability to entanglement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.026011DOI Listing

Publication Analysis

Top Keywords

entangled photon
8
photon polarimetry
4
polarimetry construct
4
construct entangled
4
photon polarimeter
4
polarimeter capable
4
capable monitoring
4
monitoring two-qubit
4
two-qubit quantum
4
quantum state
4

Similar Publications

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

As Internet of Things (IoT) technology continues to advance, there is a growing awareness of IoT security within the industry. Quantum communication technology can potentially significantly improve the communication security of IoT devices. Based on semi-quantum cryptography and utilizing single photons, this paper introduces two semi-quantum secure direct communication (SQSDC) protocols for use in smart door locks.

View Article and Find Full Text PDF

Control Power in Continuous Variable Controlled Quantum Teleportation.

Entropy (Basel)

November 2024

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Controlled quantum teleportation is an important extension of multipartite quantum teleportation, which plays an indispensable role in building quantum networks. Compared with discrete variable counterparts, continuous variable controlled quantum teleportation can generate entanglement deterministically and exhibit higher superiority of the supervisor's authority. Here, we define a measure to quantify the control power in continuous variable controlled quantum teleportation via Greenberger-Horne-Zeilinger-type entangled coherent state channels.

View Article and Find Full Text PDF

Exponentially Enhanced Scheme for the Heralded Qudit Greenberger-Horne-Zeilinger State in Linear Optics.

Phys Rev Lett

December 2024

Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.

High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.

View Article and Find Full Text PDF

Optical single-shot readout of spin qubits in silicon.

Nat Commun

January 2025

TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.

Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!