Silicon Mach-Zehnder modulators with reduced series resistance in lateral PN junction rib-waveguide phase shifters for enhanced high-speed response are fabricated and characterized. Extinction ratio higher than 10 dB is obtained at 10.3-11.7 Gbps with mask margins of 27% (10.3-Gbps 10GBE), 16% (10.7-Gbps STM-64/OC-192) and 10% (11.3-Gbps STM-64/OC-192) in eye-diagram measurements incorporating mask tests using a RF cut-off filter. In unfiltered eye-diagram measurements without mask tests, extinction ratio higher than 13 dB is obtained at 10.0-12.5 Gbps. The silicon modulators reveal high-speed performance comparable with that of lithium-niobate modulators in high-speed optical fiber telecommunications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.000B26 | DOI Listing |
We demonstrate a compact ring-assisted Mach-Zehnder interferometer (RAMZI)-based silicon photonic interleaver with a 400 GHz free spectral range (FSR), featuring flat passbands exceeding a spectral range of 50 nm. Additionally, we introduce a novel, to the best of our knowledge, add-on structure and tuning method enabling automated compensation for fabrication imperfections, precise shaping of the RAMZI flat-top passbands, and alignment with Kerr comb lines. Experimental results have shown successful interleaving of eight channels of distributed-feedback (DFB) lasers as well as a 200 GHz Kerr comb, both achieving an extinction ratio of approximately 20 dB.
View Article and Find Full Text PDFIn this paper, we propose and demonstrate an integrated polarization-insensitive single-mode filter (SMF) on a 340 nm silicon-on-insulator (SOI) platform, by introducing two lateral coupling waveguides to couple high-order modes from central single-mode waveguide to lateral waveguides. The experimental results show that the excess loss is <0.29 dB and the extinction ratio is >20 dB with a broad bandwidth of 136 nm for the fabricated SMF with a compact footprint of <13 µm.
View Article and Find Full Text PDFEcology
January 2025
Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.
Understanding the patterns and drivers of species range shifts is essential to disentangle mechanisms driving species' responses to global change. Here, we quantified local extinction and colonization dynamics of giant pandas (Ailuropoda melanoleuca) using occurrence data collected by harnessing the labor of >1000 workers and >60,000 worker days for each of the three periods (TP1: 1985-1988, TP2: 1998-2002, and TP3: 2011-2014), and evaluated how these patterns were associated with (1) protected area, (2) local rarity/abundance, and (3) abiotic factors (i.e.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Pollution Prevention Unit, Spanish Ministry for the Ecological Transition, Madrid, Spain; Institute of Environmental Assessment and Water Research - Spanish Research Council (IDAEA-CSIC), Barcelona, Spain.
Changes in climate and land-use have significantly increased both the frequency and intensity of wildland fires globally, exacerbating the potential for hazardous impacts on human health. A better understanding of particle exposure concentrations and scenarios is crucial for developing mitigation strategies to reduce the health risks. Here, PM and black carbon (BC) concentrations were monitored during wildland fires between 2022-2024, in fire-prone areas in Catalonia (NE Spain), by means of personal monitors (AirBeam2 and Micro-aethalometers AE51 and MA200).
View Article and Find Full Text PDFAm J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!