HIV-1-infected individuals can harbor viral isolates that can use CCR5, as well as CXCR4, for viral entry. To genetically engineer HIV-1 resistance in CD4(+) T cells, we assessed whether transient, adenovirus delivered zinc-finger nuclease (ZFN) disruption of genomic cxcr4 or stable lentiviral expression of short hairpin RNAs (shRNAs) targeting CXCR4 mRNAs provides durable resistance to HIV-1 challenge. ZFN-modification of cxcr4 in CD4(+) T cells was found to be superior to cell integrated lentivirus-expressing CXCR4 targeting shRNAs when CD4(+) T cells were challenged with HIV-1s that utilizes CXCR4 for entry. Cxcr4 disruption in CD4(+) T cells was found to be stable, conferred resistance, and provided for continued cell enrichment during HIV-1 infection in tissue culture and, in vivo, in peripheral blood mononuclear cell transplanted NSG mice. Moreover, HIV-1-infected mice with engrafted cxcr4 ZFN-modified CD4(+) T cells demonstrated lower viral levels in contrast to mice engrafted with unmodified CD4(+) T cells. These findings provide evidence that ZFN-mediated disruption of cxcr4 provides a selective advantage to CD4(+) T cells during HIV-1 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321595PMC
http://dx.doi.org/10.1038/mt.2011.310DOI Listing

Publication Analysis

Top Keywords

cd4+ cells
28
cxcr4
10
zinc-finger nuclease
8
cd4+
8
hiv-1 infection
8
mice engrafted
8
cells
7
hiv-1
5
nuclease editing
4
editing human
4

Similar Publications

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Introduction: T helper 17 (Th17) cells have a significant effect in the pathogenesis of asthma, and signal transducer and activator of transcription 3 (STAT3) pathway activation is critical for Th17 cell differentiation. Timosaponin A-III (TA3) was reported to inhibit the STAT3 pathway. Here, we investigated whether TA3 improved asthma by inhibiting the STAT3 pathway.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.

View Article and Find Full Text PDF

Autoimmune hepatitis (AIH) is a rare chronic inflammatory liver disease characterized by the presence of autoantibodies, including those targeting O-phosphoseryl-tRNA:selenocysteine-tRNA synthase (SepSecS), also known as soluble liver antigen (SLA). Anti-SepSecS antibodies have been associated with a more severe phenotype, suggesting a key role for the SepSecS autoantigen in AIH. To analyze the immune response to SepSecS in patients with AIH at the clonal level, we combined sensitive high-throughput screening assays with the isolation of monoclonal antibodies (mAbs) and T cell clones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!