We report three cases with very heterogeneous Hb A(2) levels caused by known chromosomal rearrangements in the β-globin locus. These rearrangements had their breakpoints at the same region in the δ gene, leading either to the Senegalese δ(0)β(+)-thalassemia (δ(0)β(+)-thal) deletion or to an insertion of a δ gene, known as Anti-Lepore. One patient showed, apart from drastically increased Hb A(2) values of 17.0%, inconspicuous hematological values. He had an Anti-Lepore mutation with three copies of the δ gene, thus explaining the high Hb A(2) level. Two other patients had Hb A(2) levels in the lower borderline range and increased Hb F levels. Molecular analysis showed the Senegalese δ(0)β(+)-thal deletion. One of them presented with an additional mild β-thal mutation leading to β-thal intermedia. These cases illustrate that different gene rearrangements with the same breakpoints in the δ gene can lead to different levels of Hb A(2) depending on the remaining number of δ genes.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03630269.2011.644651DOI Listing

Publication Analysis

Top Keywords

chromosomal rearrangements
8
rearrangements breakpoints
8
δ0β+-thal deletion
8
levels
5
gene
5
comparison chromosomal
4
rearrangements
4
rearrangements δβ-globin
4
δβ-globin complex
4
complex identical
4

Similar Publications

Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions.

Int J Cancer

January 2025

DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany.

Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10.

View Article and Find Full Text PDF

We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

Article Synopsis
  • Sir2 is a histone deacetylase that helps maintain the stability of ribosomal RNA genes in budding yeast by preventing DNA breaks from leading to changes in rDNA copy number.
  • It does this by suppressing transcription near issues that arise during DNA replication, which can otherwise provoke double-strand breaks (DSBs) and subsequent DNA repair processes.
  • When Sir2 is absent, increased transcription can lead to DSBs, resulting in unstable rDNA copy numbers and the formation of extrachromosomal DNA, highlighting the importance of Sir2 in maintaining rDNA integrity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!