The use of emerging multicomponent reactions (MCRs) in conjunction with microwave (MW)-assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. MW-assisted active methylene-based multicomponent reactions serve as a rapid and efficient tool for the synthesis of versatile heterocycles, particularly those containing structural diversity and complexity via a one-pot operation. This minireview covers our recent advances on multicomponent reactions involving active methylene compounds for the construction of bioactive molecule skeletons. In many cases, MW-assisted MCRs offer considerable improvements in selectivity, chemical yield and purity and constitutes a very simple and extremely rapid method to access a diverse range of heterocyclic motifs.

Download full-text PDF

Source
http://dx.doi.org/10.2533/chimia.2011.925DOI Listing

Publication Analysis

Top Keywords

multicomponent reactions
16
active methylene-based
8
methylene-based multicomponent
8
multicomponent
4
reactions
4
reactions microwave
4
microwave heating
4
heating emerging
4
emerging multicomponent
4
reactions mcrs
4

Similar Publications

Isothiourea-catalyzed multicomponent cascade reactions are challenging due to the existence of competitive side reactions between multiple reaction partners and intermediates. Herein, we report a practical and efficient protocol for the stereoselective divergent synthesis of pyrazolone-derived β-amino acid esters and β-lactams by isothiourea catalysis. Two distinct reaction pathways are identified, which are controlled by esterification or lactamization of the zwitterionic intermediate.

View Article and Find Full Text PDF

Ionic liquid assisted construction of synergistic modulated multiphase hybrid composites for boosting electrochemical energy storage.

J Colloid Interface Sci

December 2024

College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Electronic address:

The unique structure and strong interaction of multiphase hybrid materials have garnered significant attention as prospective candidates for electrode materials in the realm of energy storage. The present study presents a rational design of a functional NiSe-CoSe/N, B double-doped carbon hybrid composite (NCS/C), resulting in the emergence of various novel cooperative regulatory mechanisms involving: (i) the heterogeneous structure of NiSe and CoSe generates built-in electric fields to increase electron mobility; (ii) the incorporation of polyatomic double-doped carbon (N, and B) expedites electron transfer rate; intriguingly, (iii) ionic liquids not only serve as polyatomic dopants in the reaction system but also influence the microstructure of the composite. Benefiting from these synergistic effects, the NCS/C hybrid exhibits remarkable charge storage capacity and rapid electrochemical kinetics, driven by its multi-fold hollow structure and multicomponent cooperative modulation.

View Article and Find Full Text PDF

Photochemical reactions of biomass derived platform chemicals.

Front Chem

December 2024

Biomolécules: Conception, Isolement et Synthèse (BioCIS), UMR CNRS 8076, Université Paris-Saclay, Orsay, France.

Platform chemicals obtained from biomass will play an important role in chemical industry. Already existing compounds or not yet established chemicals are produced from this renewable feedstock. Using photochemical reactions as sustainable method for the conversion of matter furthermore permits to develop processes that are interesting from the ecological and economical point of view.

View Article and Find Full Text PDF

The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS) on carbon cloth (NC-CoNiS@ReS/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!