The apoptosis of cancer cells is associated with changes in the important cell properties including morphology, surface roughness and stiffness. Therefore, the changes in morphology and biophysical properties can be a good way of evaluating the anticancer activity of a drug. This study examined the effect of paclitaxel on the properties of Ishikawa and HeLa cells using atomic force microscopy (AFM), and the relationship between the changes in morphology and the biophysical properties and apoptosis was discussed. The viability and proliferation of the cells were analyzed using the methylthiazol tetrazolium (MTT) method and a TUNEL assay to confirm cellular apoptosis due to a paclitaxel treatment. AFM observations clearly showed the apoptotic morphological and biophysical changes in Ishikawa and HeLa cells. After the paclitaxel treatment, the cell membrane was torn and holed, the surface roughness was increased, and the stiffness was decreased. These changes were observed more apparently after a 24 h treatment and in Ishikawa cells compared to HeLa cells. The MTT and TUNEL assays results revealed the Ishikawa cells to be more sensitive to paclitaxel than HeLa cells and definite apoptosis occurred after a 24 h treatment. These results showed good agreement with the AFM results. Therefore, research on the morphological and biophysical changes by AFM in cancer cells will help to evaluate the anticancer activities of the drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260205 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030066 | PLOS |
ACS Appl Mater Interfaces
January 2025
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.
View Article and Find Full Text PDFChem Asian J
January 2025
IISc: Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, Bangalore, INDIA.
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles.
View Article and Find Full Text PDFWe present a non-interferometric technique for quantitative phase imaging (QPI) that is cost-effective, easily integrated into standard microscopes, and capable of wide-field imaging with noncoherent light. Our method measures the phase gradient through optical differentiation using spatially variable amplitude filters, accommodating a range of transmission functions, including commercially available variable neutral-density filters. This flexibility is made possible by a general relationship we derive.
View Article and Find Full Text PDFVet Res
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!