Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260179 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029684 | PLOS |
Neuromodulation
January 2025
Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
Objectives: Past studies have shown the efficacy of spinal targeted drug delivery (TDD) in pain relief, reduction in opioid use, and cost-effectiveness in long-term management of complex chronic pain. We conducted a survey to determine treatment variables associated with patient satisfaction.
Materials And Methods: Patients in a single pain clinic who were implanted with Medtronic pain pumps to relieve intractable pain were identified from our electronic health record.
Nature
January 2025
Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
Many known and unknown historical events have remained below detection thresholds of genetic studies because subtle ancestry changes are challenging to reconstruct. Methods based on shared haplotypes and rare variants improve power but are not explicitly temporal and have not been possible to adopt in unbiased ancestry models. Here we develop Twigstats, an approach of time-stratified ancestry analysis that can improve statistical power by an order of magnitude by focusing on coalescences in recent times, while remaining unbiased by population-specific drift.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Estimation of ancestral admixture is essential for creating personal genealogies, studying human history, and conducting genome-wide association studies (GWAS). The following three primary methods exist for estimating admixture coefficients. The frequentist approach directly maximizes the binomial loglikelihood.
View Article and Find Full Text PDFMol Ecol Resour
December 2024
Institute of Zoology, Zoological Society of London, London, UK.
In this computer note I introduce software, PopCluster, that implements a new likelihood method for unsupervised population structure analysis from marker data. To infer a coarse population structure, it assumes the mixture model and adopts a simulated annealing algorithm to make a maximum likelihood clustering analysis, partitioning the sampled individuals into a predefined number of clusters. To deduce a fine population structure, it further assumes the admixture model and employs an expectation maximisation algorithm to estimate individual admixture proportions.
View Article and Find Full Text PDFGenet Med Open
February 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!