Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) provide new prospects for studying human neurodevelopment and modeling neurological disease. In particular, iPSC-derived neural cells permit a direct comparison of disease-relevant molecular pathways in neurons and glia derived from patients and healthy individuals. A prerequisite for such comparative studies are robust protocols that efficiently yield standardized populations of neural cell types. Here we show that long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from 3 hESC and 6 iPSC lines in two independent laboratories exhibit consistent characteristics including i) continuous expandability in the presence of FGF2 and EGF; ii) stable neuronal and glial differentiation competence; iii) characteristic transcription factor profile; iv) hindbrain specification amenable to regional patterning; v) capacity to generate functionally mature human neurons. We further show that lt-NES cells are developmentally distinct from fetal tissue-derived radial glia-like stem cells. We propose that lt-NES cells provide an interesting tool for studying human neurodevelopment and may serve as a standard system to facilitate comparative analyses of hESC and hiPSC-derived neural cells from control and diseased genetic backgrounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260177PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029597PLOS

Publication Analysis

Top Keywords

stem cells
24
lt-nes cells
12
cells
11
neuroepithelial-like stem
8
pluripotent stem
8
human neurons
8
studying human
8
human neurodevelopment
8
neural cells
8
stem
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!