The purpose of this research was to determine the extent to which elevated gravitational-force event rates predict crashes and near crashes. Accelerometers, global positioning systems, cameras, and other technology were installed in vehicles driven by 42 newly licensed Virginia teenage drivers for a period of 18 months between 2006 and 2009. Elevated gravitational force and crash and near-crash events were identified, and rates per miles driven were calculated. (One mile = 1.6 km.) The correlation between crashes and near crashes and elevated gravitational-force event rates was 0.60. Analyses were done by using generalized estimating equations with logistic regression. Higher elevated gravitational-force event rates in the past month substantially increased the risk of a crash in the subsequent month (odds ratio = 1.07, 95% confidence interval: 1.02, 1.12). Although the difference in this relation did not vary significantly by time, it was highest in the first 6 months compared with the second and third 6-month periods. With a receiver operating characteristic curve, the risk models showed relatively high predictive accuracy with an area under the curve of 0.76. The authors conclude that elevated gravitational-force event rates can be used to assess risk and to show high predictive accuracy of a near-future crash.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353134 | PMC |
http://dx.doi.org/10.1093/aje/kwr440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!