Sphingosine-1-phosphate is a mediator of TNF-α action on the Na+/K+ ATPase in HepG2 cells.

J Cell Biochem

Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.

Published: June 2012

We showed previously that TNF-α down-regulates the Na+/K+ ATPase in HepG2 cells. This work was undertaken to study the role of ceramide and its metabolites in TNF-α action. Treating HepG2 cells with the cytokine in presence of an inhibitor of sphingomyelinase, abrogated the effect of TNF-α on the ATPase. To confirm the involvement of ceramide or its metabolites, cells were incubated with exogenous ceramide. Ceramide reduced time-dependently the activity of the ATPase and its effect disappeared in presence of CAY 10466 or SHKI, respective inhibitors of ceramidase and spingosine kinase, suggesting that ceramide acts via sphingosine or sphingosine-1-phosphate (S1P). However, HepG2 cells treated with exogenous sphingosine showed a higher Na+/K+ ATPase activity inferring that S1P is the one responsible for the down-regulatory effect of TNF-α and ceramide. This hypothesis was confirmed by the observed inhibitory effect of exogenous S1P on the pump, which was maintained when JNK and NF-κB were inhibited separately or simultaneously. The concurrent, but not individual inhibition of the kinase and transcription factor in the absence of S1P imitated the effect of S1P. It was concluded that S1P down-regulates the ATPase by inhibiting both JNK and NF-κB. This conclusion was supported by the observed decrease in the phosphorylation of c-jun and the enhanced protein expression of IκB and lower NK-KB activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24079DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
16
na+/k+ atpase
12
tnf-α action
8
atpase hepg2
8
ceramide metabolites
8
jnk nf-κb
8
atpase
6
ceramide
6
s1p
6
tnf-α
5

Similar Publications

Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

Background: Liver Hepatocellular Carcinoma (LIHC) is a prevalent and aggressive liver cancer with limited therapeutic options. Identifying key genes involved in LIHC can enhance our understanding of its molecular mechanisms and aid in the development of targeted therapies. This study aims to identify differentially expressed genes (DEGs) and key hub genes in LIHC using bioinformatics approaches and experimental validation.

View Article and Find Full Text PDF

FAM136A deficiency has been associated with Ménière's disease. However, the underlying mechanism of action of this protein remains unclear. We hypothesized that FAM136A functions in maintaining mitochondria, even in HepG2 cells.

View Article and Find Full Text PDF

The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!