A long lasting recombinant factor IX -Fc fusion protein (rFIX-Fc) is being developed for the treatment of hemophilia B and is currently in late stage clinical investigation. By limiting injection frequency and maintaining efficacy, rFIX-Fc shows promise as a new therapeutic option for hemophilia B patients. However, before gaining regulatory approval, rFIX-Fc must undergo rigorous analytical and biological testing, in addition to clinical trials. Included in this testing is the need to understand this protein's higher-order structure and dynamics. In this study, we investigated and compared the biophysical properties of rFIX-Fc, rFIX, and Fc using hydrogen/deuterium exchange mass spectrometry and differential scanning calorimetry. Within the limits of these techniques, our results show that structural comparability exists between rFIX and the FIX region of rFIX-Fc. In addition, changes in the structure and dynamics of both proteins, in response to calcium binding, a requirement for FIX function, are also highly comparable. In the case of Fc and Fc region of rFIX-Fc, conformational comparability is also established. These biophysical results further support the conclusion that fusing an immunoglobulin gamma 1 Fc to rFIX does not significantly alter the higher-order structure of FIX or Fc, Ca binding to FIX, or Fc functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23064 | DOI Listing |
While novel deep learning and statistics-based techniques predict accurate structural models for proteins and non-coding RNA, describing their macromolecular conformations in solution is still challenging. Small-angle X-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the structures often lack cations necessary for stability and charge neutralization, and a single structure inadequately represents the conformational plasticity of RNA.
View Article and Find Full Text PDFThe interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.
View Article and Find Full Text PDFUnlabelled: β-arrestins (βarrs) are key regulators of G protein-coupled receptors (GPCRs), essential for modulating signaling pathways and physiological processes. While current pharmacological strategies target GPCR orthosteric and allosteric sites, as well as G protein transducers, comparable tools for studying βarrs are lacking. Here, we present the discovery and characterization of novel small-molecule allosteric inhibitors of βarrs through comprehensive biophysical, biochemical, pharmacological, and structural analyses.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland.
The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Biotechnology, PES University, Bengaluru 560085, India.
Diabetes mellitus, characterized by persistent hyperglycemia, remains a critical global health challenge. Inhibition of human pancreatic alpha-amylase, a key enzyme catalyzing carbohydrate digestion, is a promising approach to manage postprandial glucose levels. Cinnamomum zeylanicum, a medicinal plant known for its therapeutic potential, harbors bioactive compounds that can act as natural alpha-amylase inhibitors, though their mechanisms remain underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!