From the stem bark of Mangifera indica, seven cycloartane-type secondary metabolites were isolated. Compound 1 has been isolated for the first time from M. indica, whereas compounds 2 (2a and 2b, as an epimeric mixture), 3, and 4 are new triterpenoid-type cycloartanes. Unambiguous (13) C and (1) H NMR assignments for these compounds and the known compounds mangiferonic acid (compound 5), isomangiferolic acid (compound 6), ambolic acid (compound 7), and friedelin (compound 8) are reported; the latter because full NMR data for these compounds are not available in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.2836DOI Listing

Publication Analysis

Top Keywords

acid compound
12
mangifera indica
8
compound
5
nmr characterization
4
characterization cycloartane
4
cycloartane triterpenes
4
triterpenes mangifera
4
indica stem
4
stem bark
4
bark mangifera
4

Similar Publications

Phase-Engineered ZrO for Tuning Catalytic Oxidation of Dichloromethane Over W/ZrO:Zr-Doped WO Clusters and the Hydrolysis-Oxidation Mechanism.

Environ Sci Technol

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

Catalytic elimination through an oxidative decomposition pathway is the most promising candidate for the purification of chlorinated volatile organic compound (CVOC) pollutants, but the complicated mechanisms and the formation pathways of hydrogenated byproducts still need to be clearly revealed. Herein, W/ZrO, as a structure-tunable catalyst, is used to catalytically oxidize dichloromethane (DCM) and clarify the formation pathway of monochloromethane (MCM). Crystal engineering of ZrO tailors surface WO species; practically, the predominant Zr-WO clusters and crystalline WO can be obtained on monoclinic (m-ZrO) and tetragonal (t-ZrO) phases.

View Article and Find Full Text PDF

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Gold nanocomposites in colorectal cancer therapy: characterization, selective cytotoxicity, and migration inhibition.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.

The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.

View Article and Find Full Text PDF

Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.

View Article and Find Full Text PDF

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!