The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-011-1079-4DOI Listing

Publication Analysis

Top Keywords

kinetics sugars
8
sugars consumption
8
ethanol
8
consumption ethanol
8
ethanol inhibition
8
saccharomyces cerevisiae
8
batch fed-batch
8
final ethanol
8
carob
7
inhibition carob
4

Similar Publications

Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium.

Commun Biol

January 2025

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides.

View Article and Find Full Text PDF

Characterization, adsorption kinetic and in vitro release behavior of curcumin loaded with porous mannitol and porous lactose: Template agent method vs. Pore-forming agent method.

Food Res Int

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China. Electronic address:

Polyvinylpyrrolidone K30 was used as the templating agent, and ammonium bicarbonate was used as the pore-forming agent to make porous mannitol and porous lactose by the template and pore-forming agent method, respectively. Compared with the template method, the porous particles prepared by the pore-forming agent method have larger pore diameter (320.276 nm and 250.

View Article and Find Full Text PDF

Resistant for Biodegradation of Diesel Fuel at High Concentration and Low Temperature.

Microorganisms

December 2024

Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.

The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.

View Article and Find Full Text PDF

Construction of Heterostructured NiS@V-NiFe(III) LDH for Enhanced OER Performance.

Molecules

December 2024

Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China.

The oxygen evolution reaction (OER), which involves a four-electron transfer and slow kinetics, requires an efficient catalyst to overcome the high energy barrier for high-performance water electrolysis. In this paper, a novel NiS@V-NiFe(III) LDH/NF catalyst was prepared via a facile two-step hydrothermal method. The constructed heterostructure of NiS@V-NiFe(III) LDH increases the specific surface area and regulates the electronic structure.

View Article and Find Full Text PDF

Electrostatic Spray Drying of a Milk Protein Matrix-Impact on Maillard Reactions.

Molecules

December 2024

Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland.

Electrostatic spray drying (ESD) of a milk protein matrix comprising whey protein isolate (WPI), skim milk powder (SMP), and lactose was compared to conventional spray drying (CSD) and freeze-drying (FD). ESD and CSD were used to produce powders at low (0.12-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!