The mechanisms occurring in a photolytic circulating-bed biofilm reactor (PCBBR) treating 2,4,6-trichlorophenol (TCP) were investigated using batch experiments following three protocols: photodegradation alone (P), biodegradation alone (B), and intimately coupled photodegradation and biodegradation (P&B). Initially, the ceramic particles used as biofilm carriers rapidly adsorbed TCP, particularly in the B experiments. During the first 10 min, the TCP removal rate for P&B was equal to the sum of the rates for P and B, and P&B continued to have the greatest TCP removal, with the TCP concentration approaching zero only in the P&B experiments. When phenol, an easily biodegradable compound, was added along with TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand (COD). The microbial communities, examined by clone libraries, changed dramatically during the P&B experiments. Whereas Burkholderia xenovorans, a known degrader of chlorinated aromatics, was the dominant strain in the TCP-acclimated inoculum, it was replaced in the P&B biofilm by strains noted for biofilm formation and biodegrading non-chlorinated aromatics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10532-012-9534-0 | DOI Listing |
J Phys Condens Matter
January 2025
School of Physical Sciences, NISER, Jatni, Bhubaneswar, 752050, INDIA.
We study topological charge pumping (TCP) in the Rice-Mele (RM) model with irreciprocal hopping. The non-Hermiticity gives rise to interesting pumping physics, owing to the presence of skin effect and exceptional points. In the static one-dimensional (1D) RM model, we find two independent tuning knobs that can drive the topological transition, namely, non-Hermitian parameter $\gamma$ and system size $N$.
View Article and Find Full Text PDFInt J Pharm
January 2025
Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.
View Article and Find Full Text PDFACS ES T Water
January 2025
Department of Civil Engineering, The University of British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada.
The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e.
View Article and Find Full Text PDFBiomater Sci
January 2025
Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam.
Biphasic calcium phosphate (BCP) is a bioceramic widely used in hard tissue engineering for bone replacement. BCP consists of β-tricalcium phosphate (β-TCP) - a highly soluble and resorbable phase - and hydroxyapatite (HA) - a highly stable phase, creating a balance between solubility and resorption, optimally supporting cell interactions and tissue growth. The β-TCP/HA ratio significantly affects the resorption, solubility, and cellular response, with a higher β-TCP ratio increasing resorption due to its solubility.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physical Sciences, NISER, Jatni, Bhubaneswar, 752050, INDIA.
We study topological charge pumping (TCP) in the Rice-Mele (RM) model with irreciprocal hopping. The non-Hermiticity gives rise to interesting pumping physics, owing to the presence of skin effect and exceptional points. In the static one-dimensional (1D) RM model, we find two independent tuning knobs that can drive the topological transition, namely, non-Hermitian parameter $\gamma$ and system size $N$.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!