In this paper, we report the basic theory and method of single exposure interference lithography (IL) to fabricate two-dimensional (2D) superposed microstructures. Distribution of six-beam interference intensities with different azimuth angle is discussed, and 2D superposed microstructures with different periodic constants are obtained by computer simulations. The experiment results using CHP-C positive photoresist show a 2D superposed photonic crystal composed of a periodically repeated hexagonal pattern of hexagonal lattice cells, which is in close agreement with the computer simulation. Fabrication of a superposed structure by single exposure IL paves the way for studying 2D photonic crystal fabrication, surface lasing, optical waveguides, and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.51.000302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!