Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately 'blind' neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977190PMC
http://dx.doi.org/10.1038/nchem.1234DOI Listing

Publication Analysis

Top Keywords

optochemical control
8
neuronal nicotinic
8
nicotinic acetylcholine
8
acetylcholine receptors
8
control genetically
4
genetically engineered
4
engineered neuronal
4
receptors
4
receptors advances
4
advances synthetic
4

Similar Publications

Functional properties of mixed ionic electronic conductors (MIECs) can be radically modified by (de)insertion of mobile charged defects. A complete control of this dynamic behavior has multiple applications in a myriad of fields including advanced computing, data processing, sensing or energy conversion. However, the effect of different MIEC's state-of-charge is not fully understood yet and there is a lack of strategies for fully controlling the defect content in a material.

View Article and Find Full Text PDF

Photocaged compounds are chemical conjugates that are designed to release an active molecule upon exposure to light of a specific wavelength. In recent years, photocaged inducer molecules such as caged isopropyl β-D-1-thiogalactopyranoside (cIPTG) have been increasingly used as a powerful tool for light-driven gene expression in bacteria, allowing researchers to precisely and noninvasively tune the expression of specific target genes. In this chapter, we present a guideline for the synthesis of 6-nitropiperonyl photocaged IPTG (NP-cIPTG) as well as its in vivo application as an optochemical on-switch of gene transcription in Escherichia coli and other bacteria.

View Article and Find Full Text PDF

Ubiquitination is a dynamic post-translational modification governing protein abundance, function, and localization in eukaryotes. The Ubiquitin protein is conjugated to lysine residues of target proteins, but can also repeatedly be ubiquitinated itself, giving rise to a complex code of ubiquitin chains with different linkage types. To enable studying the cellular dynamics of linkage-specific ubiquitination, light-activatable polyubiquitin chain formation is reported here.

View Article and Find Full Text PDF

The core@shell nanostars composed of star-like Au nanocores with TiO shells (Au@TiO NSs) are synthesized in a one-pot reaction without any reducing or surface-controlling agents. The Au@TiO NSs exhibit strong absorption in the UV region based on the interaction between the Au nanocore and the TiO shell, and this optochemical property leads to the efficient laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) analysis of small molecules with low background interference and high reproducible mass signals compared with spherical Au nanoparticles (NPs). The limit of detection and dynamic range values of various analytes also improved with Au@TiO NSs compared with those obtained with spherical Au NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!