Polarity studies in two classes of imidazolium-based protic ionic liquids (PILs) possessing [HSO(4)](-), [HCOO](-), [CH(3)COO](-) and [CH(3)CH(2)COO](-) anions were carried out using a solvatochromic method from 298.15 to 353.15 K. For 1-methylimidazolium class of PILs, E(T)(30) was found to be independent over the entire range of temperature, while E(T)(30) was noted to decrease with a rise in temperature in the case of 1-butylimidazolium class of PILs containing [CH(3)COO](-) and [CH(3)CH(2)COO](-) anions. The E(T)(30) value decreases in both the classes upon varying the anions ([HSO(4)](-), [HCOO](-), [CH(3)COO](-) and [CH(3)CH(2)COO](-)). The E(T)(30) value is controlled by hydrogen bond acceptor basicity, β, and dipolarity/polarizability, π*. The E(T)(30) value for PILs varies inversely to the strength of the coulombic interaction between ions in PILs. Strong interactions between ions lead to lower E(T)(30) values. Unlike the poor thermal effect on E(T)(30), the Kamlet-Taft parameters i.e. α, β and π* have pronounced thermal effect in the imidazolium-based PILs. Variation in the Kamlet-Taft parameters is controlled by the stabilization of ions and the degree of proton transfer from Brønsted acid to Brønsted base.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp23256a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!