We have evaluated the potential of bovine lactoferrin and lactoferricin for their ability to prevent and/or treat genital HSV-2 infection in mice. We confirm previous data showing that both lactoferrin and lactoferricin have antiviral properties in vitro and can inhibit HSV-2 infection of GMK cells in a dose-dependent manner. When tested in vivo, lactoferricin but not lactoferrin was also a potent inhibitor of HSV-2 infection. When admixed with virus prior to inoculation, lactoferricin inhibited disease development and significantly reduced the viral load in a genital model of HSV-2 infection in mice. Lactoferrin and lactoferricin were also tested for their ability to stimulate the production of chemokines. Neither of the compounds induced the production of CCL3, CCL5, CXCL1 or CXCL2 by mouse splenocytes in vitro. However, when tested in vivo, both lactoferrin and lactoferricin were able to induce local vaginal production of CCL5. Lactoferrin also induced CXCL2 production. The prophylactic and/or therapeutic effects of lactoferrin or lactoferricin were also tested. But none of the compounds were efficient in blocking HSV-2 infection when given 24h prior to HSV-2 infection. Lactoferricin however showed promising results as a therapeutic agent and delayed both disease onset by 3days as well as reducing the viral load almost 15-fold when given as a single dose 24h post-infection. These data show that lactoferricin can block genital herpes infection in mice, and perhaps also be used for post-infection treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2012.01.003 | DOI Listing |
Infect Dis Model
June 2025
Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar.
We aimed to understand to what extent knowledge of the prevalence of one sexually transmitted infection (STI) can predict the prevalence of another STI, with application for men who have sex with men (MSM). An individual-based simulation model was used to study the concurrent transmission of HIV, HSV-2, chlamydia, gonorrhea, and syphilis in MSM sexual networks. Using the model outputs, 15 multiple linear regression models were conducted for each STI prevalence, treating the prevalence of each as the dependent variable and the prevalences of up to four other STIs as independent variables in various combinations.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
December 2024
The Johns Hopkins University, Baltimore, MD.
Background: On demand, topical PrEP is desired by those preferring episodic, nonsystemic PrEP. PC-1005 gel (MIV-150, zinc, and carrageenan) exhibits in vitro antiviral HIV-1, human papillomavirus (HPV), and herpes simplex virus type 2 (HSV-2) activity, attractive for a multipurpose prevention technology candidate. We evaluated the safety, pharmacokinetics, and antiviral effect of rectally applied PC-1005.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Graduate Medical Education, University of Miami Miller School of Medicine, Fort lauderdale, Florida, USA.
Sexually transmitted proctitis, a prevalent concern among men who have sex with men (MSM) is frequently caused by a range of pathogens, including herpes simplex virus (HSV), and While HSV-associated proctitis typically presents with visible lesions, cases without external manifestations remain evasive. We report the case of an MSM in his early 30s presenting with dyschezia and perineal discomfort after unprotected anoreceptive intercourse. Despite initial inconspicuous findings, rectal swabs revealed HSV-2 infection.
View Article and Find Full Text PDFSex Transm Dis
February 2025
Quest Diagnostics Inc., San Juan Capistrano, CA.
Background: Approximately 2% of HerpeSelect herpes simples virus type 2 (HSV-2) IgG enzyme immunoassay (screen assay) sera-positive samples do not confirm using an HSV-2 IgG inhibition assay. Of these, roughly 1.33% are confirmed negative, and a small proportion (0.
View Article and Find Full Text PDFViruses
November 2024
Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!