Non-steroidal anti-inflammatory drugs (NSAIDs) often cause gastrointestinal complications such as gastric ulcers and erosions. Recent studies on the pathogenesis have revealed that NSAIDs induce lipid peroxidation in gastric epithelial cells by generating superoxide in mitochondria, independently with cyclooxygenase inhibition and the subsequent prostaglandin deficiency. More recently, gastric hydrochloric acid (HCl) has been regarded as an inciting factor of gastric mucosal injuries, and reportedly induced cellular lipid peroxidation in vitro. We hypothesized that gastric acid and NSAID treatment synergistically induce cellular injury in gastric epithelial cells. We treated gastric epithelial RGM1 cells with acidic solutions and NSAIDs, and examined cellular injury, lipid peroxidation, mitochondrial transmenbrane potential and mitochondrial superoxide. We pretreated RGM1 cells with the acidic solutions for 0.5 h and after that treated them with each NSAID for 15 h and found that the exposure to acid and NSAIDs indeed induced cellular injury. We hypothesized that gastric acid and NSAID treatment synergistically induce mitochondrial superoxide production, which induces gastric cellular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000334685DOI Listing

Publication Analysis

Top Keywords

cellular injury
16
lipid peroxidation
12
gastric epithelial
12
gastric
10
gastric mucosal
8
epithelial cells
8
induced cellular
8
hypothesized gastric
8
gastric acid
8
acid nsaid
8

Similar Publications

Intranasal Administrations of AP39-Loaded Liposomes Selectively Deliver H2S to Neuronal Mitochondria to Protect Neonatal Hypoxia-Ischemia by Targeting ERK1/2 and Caspase-1.

ACS Biomater Sci Eng

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.

Mitochondrial dysfunction contributes to the pathology of hypoxia-ischemia (HI) brain damage by aberrant production of ROS. Hydrogen sulfide (HS) has been demonstrated to exert neuroprotective effects through antioxidant mechanisms. However, the diffusion of HS is not specifically targeted and may even be systemically toxic.

View Article and Find Full Text PDF

Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Deer antler blastema progenitor cells (ABPCs) are promising for regenerative medicine due to their role in annual antler regeneration, the only case of complete organ regeneration in mammals. ABPC-derived signals show great potential for promoting regeneration in tissues with limited natural regenerative ability. Our findings demonstrate the capability of extracellular vesicles from ABPCs (EVs) to repair spinal cord injury (SCI), a condition with low regenerative capacity.

View Article and Find Full Text PDF

Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!