The heterogeneity of cell populations and the influence of stochastic noise might be important issues for the molecular analysis of cellular reprogramming at the system level. Here, we show that in Physarum polycephalum, the expression patterns of marker genes correlate with the fate decision of individual multinucleate plasmodial cells that had been exposed to a differentiation-inducing photostimulus. For several hours after stimulation, the expression kinetics of PI-3-kinase, piwi, and pumilio orthologs and other marker genes were qualitatively similar in all stimulated cells but quantitatively different in those cells that subsequently maintained their proliferative potential and failed to differentiate accordingly. The results suggest that the population of nuclei in an individual plasmodium behaves synchronously in terms of gene regulation to an extent that the plasmodium provides a source for macroscopic amounts of homogeneous single-cell material for analysing the dynamic processes of cellular reprogramming. Based on the experimental findings, we predict that circuits with switch-like behaviour that control the cell fate decision of a multinucleate plasmodium operate through continuous changes in the concentration of cellular regulators because the nuclear population suspended in a large cytoplasmic volume damps stochastic noise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505798 | PMC |
http://dx.doi.org/10.1111/j.1574-6968.2012.02506.x | DOI Listing |
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Mental Health Research Center, Moscow, Russia.
Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.
View Article and Find Full Text PDFSci Rep
December 2024
School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
Platelets possess cancer-induced reprogramming properties, thereby contributing to RNA profile alterations and further cancer progression, while the former is considered a promising biosource for cancer detection. Hence, tumor-educated platelets (TEP) are considered a prospective novel method for early breast cancer (BC) screening. Our study integrated the data from 276 patients with untreated BC, 95 with benign disease controls, 214 healthy controls, and 2 who underwent mastectomy in Chinese and European cohorts to develop a 10-biomarker diagnostic model.
View Article and Find Full Text PDFBone
December 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.
View Article and Find Full Text PDFElife
December 2024
Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!