Our research thus far has concerned the impact of external electromagnetic fields (50 Hz) and low (0.01-10 mT) induction on adherence capabilities of T lymphocytes obtained from the blood of patients with head and neck tumors. We know that the in vitro adherence capability of T lymphocytes towards surfaces in cancer patients is less than that of control. Previously, we have found that exposure to electromagnetic fields (50 Hz/0.01-10 mT) increases the capability of T lymphocytes, in larynx/pharynx cancer patients, to adhere in vitro to surfaces, achieving almost physiological values, in not only pre-treatment patients but also those receiving treatment in the course of follow-up. The capability of T lymphocytes in controls (voluntary blood donors) to adhere to surfaces was also increased (50 Hz/0.01-0.5 mT). The present study concentrates on the significance of the level of electromagnetic field induction in order to determine whether low induction values can restore T lymphocytes adherence capabilities. Testing a subset of 20 patients showed a statistically significant difference (p<0.05) in the in vitro adherence capacity of T lymphocytes between both 0.01 and 0.05, and 0.1 mT induction levels. In the control group (patients diagnosed with chronic sensorineural hearing loss) there was even a statistically significant difference between induction values of 0.05 and 0.01 mT. A statistically significant difference (p<0.05) was also achieved with induction levels of 1 and 10 mT compared to 0.5, 0.1, and 0.05 mT, respectively. Therefore, we concluded that lower induction values resulted in a more biologically significant response.

Download full-text PDF

Source
http://dx.doi.org/10.3109/15368378.2011.630119DOI Listing

Publication Analysis

Top Keywords

electromagnetic fields
12
adherence capabilities
12
capability lymphocytes
12
induction values
8
external electromagnetic
8
cancer patients
8
lymphocytes
5
patients
5
impact lower
4
induction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!