Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge-chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at ~275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp208578wDOI Listing

Publication Analysis

Top Keywords

effects charge
4
charge location
4
location absorptions
4
absorptions lifetimes
4
lifetimes protonated
4
protonated tyrosine
4
tyrosine peptides
4
peptides vacuo
4
vacuo nearby
4
nearby charges
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!