The NSAID (non-steroidal anti-inflammatory drug) indomethacin, a cyclo-oxygenase-1 and -2 inhibitor with anti-inflammatory and analgesic properties, is known to possess anticancer activity against CRC (colorectal cancer) and other malignancies in humans; however, the mechanism underlying the anticancer action remains elusive. In the present study we show that indomethacin selectively activates the dsRNA (double-stranded RNA)-dependent protein kinase PKR in a cyclo-oxygenase-independent manner, causing rapid phosphorylation of eIF2α (the α-subunit of eukaryotic translation initiation factor 2) and inhibiting protein synthesis in colorectal carcinoma and other types of cancer cells. The PKR-mediated translational block was followed by inhibition of CRC cell proliferation and apoptosis induction. Indomethacin did not affect the activity of the eIF2α kinases PERK (PKR-like endoplasmic reticulum-resident kinase), GCN2 (general control non-derepressible-2) and HRI (haem-regulated inhibitor kinase), and induced eIF2α phosphorylation in PERK-knockout and GCN2-knockout cells, but not in PKR-knockout cells or in human PKR-silenced CRC cells, identifying PKR as a selective target for indomethacin-induced translational inhibition. The fact that indomethacin induced PKR activity in vitro, an effect reversed by the PKR inhibitor 2-aminopurine, suggests a direct effect of the drug in kinase activation. The results of the present study identify PKR as a novel target of indomethacin, suggesting new scenarios on the molecular mechanisms underlying the pleiotropic activity of this traditional NSAID.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20111236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!