Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156800912799277421 | DOI Listing |
Biomacromolecules
January 2025
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
2,2,6,6-Tetramethylpiperidine--oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx).
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFSpine Deform
January 2025
Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, NY, 10032, USA.
Background: Alpine skiing requires flexibility, endurance, strength and rotational ability, which may be lost after long fusions to the pelvis for adult spinal deformity (ASD). ASD patients may worry about their ability to return to skiing (RTS) postoperatively. There is currently insufficient data for spine surgeons to adequately address questions about when, or if, their patients might RTS.
View Article and Find Full Text PDFDiscov Nano
January 2025
Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.
Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary.
View Article and Find Full Text PDFDiscov Nano
January 2025
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!