Large crystal toxin formation in chromosomally engineered Bacillus thuringiensis subsp. aizawai due to σE accumulation.

Appl Environ Microbiol

Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.

Published: March 2012

Seven distinct Bacillus thuringiensis subsp. aizawai integrants were constructed that carried the chitinase (chiBlA) gene from B. licheniformis under the control of the cry11Aa promoter and terminator with and without p19 and p20 genes. The toxicity of B. thuringiensis subsp. aizawai integrants against second-instar Spodoptera litura larvae was increased 1.8- to 4.6-fold compared to that of the wild-type strain (BTA1). Surprisingly, the enhanced toxicity in some strains of B. thuringiensis subsp. aizawai integrants (BtaP19CS, BtaP19CSter, and BtaCAT) correlated with an increase in toxin formation. To investigate the role of these genes in toxin production, the expression profiles of the toxin genes, cry1Aa and chiBlA, as well as their transcriptional regulators (sigK and sigE), were analyzed by quantitative real-time RT-PCR (qPCR) from BTA1, BtaP19CS, and BtaCAT. Expression levels of cry1Aa in these two integrants increased about 2- to 3-fold compared to those of BTA1. The expression of the transcription factor sigK also was prolonged in the integrants compared to that of the wild type; however, sigE expression was unchanged. Western blot analysis of σ(E) and σ(K) showed the prolonged accumulation of σ(E) in the integrants compared to that of BTA1, resulting in the increased synthesis of pro-σ(K) up to T(17) after the onset of sporulation in both BtaP19CS and BtaCAT compared to that of T(13) in BTA1. The results from qPCR indicate clearly that the cry1Aa promoter activity was influenced most strongly by σ(E), whereas cry11Aa depended mostly on σ(K). These results on large-crystal toxin formation with enhanced toxicity should provide useful information for the generation of strains with improved insecticidal activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298149PMC
http://dx.doi.org/10.1128/AEM.06505-11DOI Listing

Publication Analysis

Top Keywords

thuringiensis subsp
16
subsp aizawai
16
toxin formation
12
aizawai integrants
12
bacillus thuringiensis
8
enhanced toxicity
8
btap19cs btacat
8
compared bta1
8
integrants compared
8
integrants
6

Similar Publications

Effects of Bti on the diversity and community composition of three Chironomidae subfamilies across different micro-habitats.

Environ Pollut

December 2024

iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.

The mosquito control agent Bacillus thuringiensis subsp. israelensis (Bti) is considered environmentally friendly due to its highly specific mode of action. Nevertheless, adverse effects of Bti have been observed in non-biting midges of the family Chironomidae.

View Article and Find Full Text PDF

Background: The biological larvicide Bacillus thuringiensis subsp. israelensis (Bti) represents a safe and effective alternative to chemical insecticides for mosquito control. Efficient control of mosquitoes implicates continuous and extensive application of Bti.

View Article and Find Full Text PDF

Effects of New Btk-Based Formulations BLB1 and Lip on Aquatic Non-Target Organisms.

Biology (Basel)

October 2024

Laboratoire des Biomolécules, Venins et Applications Théranostiques, Equipe NanoBioMedika, Institut Pasteur de Tunis, Université Tunis-El Manar, 13 Place Pasteur, BP74, Belvédère, Tunis 1002, Tunisia.

Integrated pest management based on the use of biopesticides is largely applied. Experimental bioassays are critical to assess biopesticide biosafety at the ecotoxicological level. In this study, we investigated the effects of the new ()-formulated-based biopesticides BLB1 and Lip, efficiently tested in field assays (IPM-4-CITRUS EC project no.

View Article and Find Full Text PDF

Background: Spinosad consists of spinosyn A and spinosyn D that are produced by the soil-dwelling actinomycete Saccharopolyspora spinosa. It has been used to control a wide variety of arthropod pests of economic importance. Formulations of spinosad have been used to control larval mosquitoes since approximately 2010.

View Article and Find Full Text PDF

Introduction: The cadherin G-protein coupled receptor BT-R in the mosquito is a single membrane-spanning α-helical (bitopic) protein that represents the most abundant and functionally diverse group of membrane proteins. Binding of the Cry4B toxin of subsp. (Bti) to BT-R triggers a Mg2+-dependent signalling pathway in the mosquito that involves stimulation of G protein α-subunit, which subsequently launches a coordinated signalling cascade involving Na/K-ATPase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!