The metal cation chelating capacity of astaxanthin. Does this have any influence on antiradical activity?

Molecules

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C. U. P.O. Box 70-360, Coyoacán, 04510 México, D. F., Mexico.

Published: January 2012

In this Density Functional Theory study, it became apparent that astaxanthin (ASTA) may form metal ion complexes with metal cations such as Ca⁺², Cu⁺², Pb⁺², Zn⁺², Cd⁺² and Hg⁺². The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268172PMC
http://dx.doi.org/10.3390/molecules17011039DOI Listing

Publication Analysis

Top Keywords

metal cations
8
better electron
8
metal
6
metal cation
4
cation chelating
4
chelating capacity
4
capacity astaxanthin
4
astaxanthin influence
4
influence antiradical
4
antiradical activity?
4

Similar Publications

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4.

View Article and Find Full Text PDF

An easy-to-synthesize aggregation-induced emission (AIE) active Schiff base HNSA was obtained by condensing equimolar amount of 3-hydroxy-2-naphthohydrazide and salicylaldehyde. In pure DMSO, HNSA is non-fluorescent, but increasing the HEPES (HO, 10 mM, pH 7.4) fraction (f) ≥ 90% showed an intense green fluorescence with maximum fluorescence intensity at 515 nm.

View Article and Find Full Text PDF

Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!