The vomeronasal system (VNS) seems to be functional in some primates and involved in the detection of urinary signals. Anterograde tracing (WGA-HRP) and evoked metabolic activity (2-DG method) were used in order to clarify the conditions under which the VNS is activated in the prosimian mouse lemur. After WGA-HRP deposition at one of the oral entries of the nasopalatine duct, reaction product was observed within the accessory bulb (AOB). 2-DG experiments show that urine in the volatile phase stimulates the main but not the accessory bulb (AOB). Liquid urine produced bilateral or unilateral activation of AOB depending on whether the stimulation was exclusively unilateral or not; under the same conditions distilled water could not produce 2-DG labelling. It is concluded that VNS is activated by urine in the liquid but not the volatile phase. The biological implications of these results are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02423511 | DOI Listing |
Int J Neurosci
January 2025
Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
Front Neurosci
December 2024
Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Vagus nerve stimulation (VNS) has emerged as a promising therapeutic approach for stroke treatment, drawing significant attention due to its potential benefits. However, despite this growing interest, a systematic bibliometric analysis of the research landscape is yet to be conducted.
Methods: We performed a comprehensive search of the Web of Science Core Collection (WoSCC) database for literature published between January 1, 2005, and August 31, 2024.
Background: Few treatments are available for individuals with marked treatment-resistant depression (TRD).
Objective: Evaluate the safety and effectiveness of FDA-approved adjunctive vagus nerve stimulation (VNS) in patients with marked TRD.
Methods: This 12-month, multicenter, double-blind, sham-controlled trial included 493 adults with marked treatment-resistant major depression who were randomized to active or no-stimulation sham VNS for 12 months.
Brain Stimul
December 2024
Medical University of South Carolina, Department of Psychiatry, Charleston, SC, USA.
Background: Depression treatments aim to minimize symptom burden and optimize quality of life (QoL) and psychosocial function.
Objective: Compare the effects of adjunctive versus sham vagus nerve stimulation (VNS) on QoL and function in markedly treatment-resistant depression (TRD).
Methods: In this multicenter, double-blind, sham-controlled trial, 493 adults with TRD and ≥4 adequate but unsuccessful antidepressant treatment trials (current episode) were randomized to active (n = 249) or sham (n = 244) VNS (plus treatment as usual) over a 12-month observation period.
Infect Med (Beijing)
December 2024
Department of Cardiology, Cleveland Clinic Foundation, Ohio 44195, USA.
This review investigates the therapeutic potential of vagal nerve stimulation (VNS) in managing long COVID, a condition marked by persistent symptoms following acute SARS-CoV-2 infection. Long COVID manifests as ongoing fatigue, cognitive impairment, and autonomic dysfunction, hypothesized to arise from sustained inflammatory and neurological dysregulation. The vagus nerve, central to modulating systemic inflammation and autonomic homeostasis, represents a promising therapeutic target for symptom alleviation through VNS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!