Differential interactions of a biological photosensitizer with liposome membranes having varying surface charges.

Photochem Photobiol Sci

Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Calcutta, 700009, India.

Published: April 2012

The present work demonstrates the interaction of promising cancer cell photosensitizer, harmane (HM), with liposome membranes of varying surface charges, dimyristoyl-l-α-phosphatidylcholine (DMPC) and dimyristoyl-l-α-phosphatidylglycerol (DMPG). Electrostatic interaction of the cationic probe (HM) with the surface charges of the lipids is responsible for differential modulation of the spectral properties of the drug in different lipid environments. Estimation of partition coefficient (K(p) (±10%) = 5.58 × 10(4) in DMPC and 3.28 × 10(5) in DMPG) of HM between aqueous buffer and lipid phases reflect strong binding interaction of the drug with both the lipids. Evidence for greater degree of partitioning of HM into DMPG membrane compared to DMPC membrane has been deduced and further substantiated from experimental studies such as steady-state fluorescence anisotropy, micropolarity determination. The molecular modeling investigation by docking simulation coupled with fluorescence quenching experiment has been exploited to substantiate the location of drug at the lipid head-group region. Modulation of the dynamical properties of the drug within the lipid environments has also been addressed. Rotational relaxation dynamics studies unravel the impartation of a significant degree of motional restriction on the probe molecule within the lipids and reinforce the differential interactions of HM with the two lipid systems along the lines of other findings. Fluorescence kinetics studies reveal a faster association (in terms of apparent rate constants describing the process of interaction) of the drug with DMPG membrane compared to DMPC. This result is argued in connection with the electrostatic interaction between the drug and the liposome surface charges.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2pp05346bDOI Listing

Publication Analysis

Top Keywords

surface charges
16
drug lipid
12
interaction drug
12
differential interactions
8
liposome membranes
8
membranes varying
8
varying surface
8
electrostatic interaction
8
properties drug
8
lipid environments
8

Similar Publications

Atomically Dispersed Ta-O-Co Sites Capable of Mitigating Side Reaction Occurrence for Stable Lithium-Oxygen Batteries.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.

View Article and Find Full Text PDF

Self-powered Wraparound (Abaxial) Droplet Deposition via a Superhydrophobic Surface Aid.

J Agric Food Chem

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.

Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.

View Article and Find Full Text PDF

A multiscale quantum mechanical (QM)/classical approach is presented that is able to model the optical properties of complex nanostructures composed of a molecular system adsorbed on metal nanoparticles. The latter is described by a combined atomistic-continuum model, where the core is described using the implicit boundary element method (BEM) and the surface retains a fully atomistic picture and is treated employing the frequency-dependent fluctuating charge and fluctuating dipole (ωFQFμ) approach. The integrated QM/ωFQFμ-BEM model is numerically compared with state-of-the-art fully atomistic approaches, and the quality of the continuum/core partition is evaluated.

View Article and Find Full Text PDF

We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.

View Article and Find Full Text PDF

During the blood coagulation cascade, coagulation factor VIII (FVIII) is activated by thrombin to form activated factor VIII (FVIIIa). FVIIIa associates with platelet surfaces at the site of vascular damage to form an intrinsic tenase complex with activated factor IX. A working model for FVIII membrane binding involves the association of positively charged FVIII residues with negatively charged lipid headgroups and the burial of hydrophobic residues into the membrane interior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!