The ESCRT machinery mediates polarization of fibroblasts through regulation of myosin light chain.

J Cell Sci

Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.

Published: January 2012

Recent evidence implicates the endosomal sorting complex required for transport (ESCRT) in the regulation of epithelial polarity in Drosophila melanogaster, but the mechanisms responsible for this action remain unclear. Here we show that ESCRTs determine cell orientation during directed migration in human fibroblasts. We find that endosomal retention of α5β1 integrin and its downstream signaling effector Src in ESCRT-depleted cells is accompanied by the failure to activate myosin light chain kinase (MLCK), which thereby cannot phosphorylate myosin regulatory light chain (MRLC). Using this mechanism, ESCRT-depleted fibroblasts fail to orient their Golgi complex to undergo directional migration and show impaired focal adhesion turnover and increased spreading on fibronectin. Consistent with these findings, expression of a phosphomimetic mutant of MRLC in ESCRT-depleted cells restores normal phenotypes during cell spreading and orientation of the Golgi. These results suggest that, through their role in regulating integrin trafficking, ESCRTs regulate phosphorylation of MRLC and, subsequently, Golgi orientation and cell spreading.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.088310DOI Listing

Publication Analysis

Top Keywords

light chain
12
myosin light
8
escrt-depleted cells
8
cell spreading
8
escrt machinery
4
machinery mediates
4
mediates polarization
4
polarization fibroblasts
4
fibroblasts regulation
4
regulation myosin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!