Parkinson's disease (PD), caused by selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, is the most common movement disorder. While its etiology remains unknown, mitochondrial dysfunction is recognized as one of the major cellular defects contributing to PD pathogenesis. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in neuroprotection in several neuronal injury models. Here we show that hucp2 expression in Drosophila DA neurons under the control of the tyrosine hydroxylase (TH) promoter protects those flies against the mitochondrial toxin rotenone-induced DA neuron death, head dopamine depletion, impaired locomotor activity and energy deficiency. Under normal conditions, hUCP2 flies maintain an enhanced locomotor activity and have higher steady-state ATP levels suggesting improved energy homeostasis. We show that while no increased mitochondrial DNA content or volume fraction is measured in hUCP2 flies, augmented mitochondrial complex I activity is detected. Those results suggest that it is increased mitochondrial function but not mitochondrial biogenesis that appears responsible for higher ATP levels in hUCP2 flies. Consistent with this notion, an up-regulation of Spargel, the Drosophila peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) homologue is detected in hUCP2 flies. Furthermore, a Spargel target gene Tfam, the mitochondrial transcription factor A is up-regulated in hUCP2 flies. Taken together, our results demonstrate a neuroprotective effect of hUCP2 in DA neurons in a Drosophila sporadic PD model. Moreover, as the TH promoter activity is present in both DA neurons and epidermis, our results reveal that hucp2 expression in those tissues may act as a stress signal to trigger Spargel activation resulting in enhanced mitochondrial function and increased energy metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2011.12.055DOI Listing

Publication Analysis

Top Keywords

hucp2 flies
20
hucp2
9
mitochondrial
9
uncoupling protein
8
parkinson's disease
8
hucp2 expression
8
locomotor activity
8
atp levels
8
increased mitochondrial
8
mitochondrial function
8

Similar Publications

The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson's disease.

Neurobiol Dis

September 2014

Department of Molecular and Cell Biology, University of Connecticut, 354 Mansfield Road, Storrs, CT 06269, USA; Department of Allied Health Sciences, University of Connecticut, 358 Mansfield Road, Storrs, CT 06269, USA. Electronic address:

Parkinson's disease (PD), caused by selective loss of dopaminergic (DA) neurons in the substantia nigra, is the most common movement disorder with no cure or effective treatment. Exposure to the mitochondrial complex I inhibitor rotenone recapitulates pathological hallmarks of PD in rodents and selective loss of DA neurons in Drosophila. However, mechanisms underlying rotenone toxicity are not completely resolved.

View Article and Find Full Text PDF

Parkinson's disease (PD), caused by selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, is the most common movement disorder. While its etiology remains unknown, mitochondrial dysfunction is recognized as one of the major cellular defects contributing to PD pathogenesis. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in neuroprotection in several neuronal injury models.

View Article and Find Full Text PDF

Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly.

Cell Metab

February 2005

Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA.

The oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!