Tpx2 is a microtubule-associated protein that activates the cell-cycle kinase Aurora A and regulates the mitotic spindle. Overexpression of Tpx2 is associated with the development of different human tumors and strongly correlates with chromosomal instability. By analyzing a conditional null mutation in the mouse Tpx2 gene, we show here that Tpx2 expression is essential for spindle function and chromosome segregation in the mouse embryo. Conditional genetic ablation of Tpx2 in primary cultures resulted in deficient microtubule nucleation from DNA and aberrant spindles during prometaphase. These cells eventually exited from mitosis without chromosome segregation. In addition, Tpx2 haploinsufficiency led to the accumulation of aneuploidies in vivo and increased susceptibility to spontaneous lymphomas and lung tumors. Together, our findings indicate that Tpx2 is essential for maintaining genomic stability through its role in spindle regulation. Subtle changes in Tpx2 expression may favor tumor development in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-11-1971DOI Listing

Publication Analysis

Top Keywords

tpx2
9
tumor development
8
tpx2 expression
8
chromosome segregation
8
tpx2 controls
4
spindle
4
controls spindle
4
spindle integrity
4
integrity genome
4
genome stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!