A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating event- and trend-based analyses to improve detection of glaucomatous visual field progression. | LitMetric

Purpose: To present and evaluate a new method of integrating event- and trend-based analyses of visual field progression in glaucoma.

Design: Observational cohort study.

Participants: The study included 711 eyes of 357 glaucoma patients or suspects followed up for an average of 5.0 ± 2.0 years with an average of 7.7 ± 2.3 standard automated perimetry visual fields. An additional group of 55 eyes of 55 glaucoma patients underwent repeated tests over a short period to test the specificity of the method.

Methods: Event-based analysis of progression was performed using the Guided Progression Analysis (GPA; Carl-Zeiss Meditec, Inc., Dublin, CA). Trend-based assessment used the visual field index (VFI). A hierarchical Bayesian model was built to incorporate results from the GPA in the prior distribution for the VFI slopes, allowing the event-based method to influence the inferences made for the trend-based assessment.

Main Outcome Measures: The Bayesian method was compared with the conventional ordinary least squares (OLS) regression method of trend-based assessment.

Results: Of the 711 eyes followed up over time, 64 (9%) had confirmed progression with GPA. Bayesian slopes of VFI change were able to detect 63 of these eyes (98%). An additional group of 49 eyes (7%) had progression by Bayesian slopes, but not by GPA. Slopes of VFI change calculated by the OLS method were able to identify only 32 of the 64 eyes (50%) with GPA progression. The agreement with GPA was significantly better for the Bayesian compared with the OLS method (κ = 0.68 vs. 0.43, respectively; P<0.001). Eyes progressing only by the Bayesian method had faster rates of change than those progressing only by the OLS method. When applied to the 50 eyes in the stable glaucoma group, both the Bayesian and the OLS methods had a specificity of 96%.

Conclusions: A Bayesian hierarchical modeling approach for integrating event- and trend-based assessments of visual field progression performed better than either method used alone. Estimates of rates of change obtained from the Bayesian model had increased precision and may be superior to the conventional OLS method for providing information on the risk of development of functional impairment in the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710401PMC
http://dx.doi.org/10.1016/j.ophtha.2011.10.003DOI Listing

Publication Analysis

Top Keywords

visual field
12
integrating event-
8
event- trend-based
8
trend-based analyses
8
field progression
8
711 eyes
8
glaucoma patients
8
additional group
8
group eyes
8
bayesian slopes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!