Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride.
Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm Ø×4 mm) were mirror-polished and treated according to 6 groups (n=6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (α=.05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (α=.05).
Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29±0.55/2.33±0.17; IT, 2.24±0.46/2.02±0.38; IFT, 2.22±0.53/1.95±0.36; BW, 2.22±0.42/3.76±0.45; BT, 2.27±0.55/16.05±3.25; BFT, 2.27±0.51/22.39±5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79±0.25/2.01±0.25; IT, 1.61±0.13/1.74±0.19; IFT, 1.92±0.39/2.29±0.51; BW, 2.00±0.71/2.05±0.43; BT, 2.37±0.86/11.17±2.29; BFT, 1.83±0.50/15.73±1.78. No significant differences were seen after immersions (p>.05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p<.01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces.
Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdent.2012.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!