Recombinant expression of the norovirus capsid protein VP1 leads to self-assembly of non-infectious virus-like particles (VLPs), which are recognized as promising vaccine candidates against norovirus infections. To overcome the scalability issues connected to the ultracentrifugation-based purification strategies used in previous studies, an anion exchange-based purification method for norovirus VLPs was developed in this study. The method consists of precipitation by polyethylene glycol (PEG) and a single anion exchange chromatography step for purifying baculovirus-expressed GII.4 norovirus VLPs, which can be performed within one day. High product purity was obtained using chromatography. The purified material also contained fully assembled monodispersed VLPs, which were recognized by human sera containing polyclonal antibodies against norovirus GII.4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2012.01.003DOI Listing

Publication Analysis

Top Keywords

particles vlps
8
exchange chromatography
8
vlps recognized
8
norovirus vlps
8
vlps
5
norovirus
5
purification norovirus-like
4
norovirus-like particles
4
vlps ion
4
ion exchange
4

Similar Publications

Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles.

Nat Commun

January 2025

CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.

Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Octahedral small virus-like particles of dengue virus type 2.

J Virol

December 2024

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

Unlabelled: Flavivirus envelope (E) and precursor M (prM) proteins, when ectopically expressed, assemble into empty, virus-like particles (VLPs). Cleavage of prM to M and loss of the pr fragment converts the VLPs from immature to mature particles, mimicking a similar maturation of authentic virions. Most of the VLPs obtained by prM-E expression are smaller than virions; early, low-resolution cryo-EM studies suggested a simple, 60-subunit, icosahedral organization.

View Article and Find Full Text PDF

Design of Novel Vaccines Based on Virus-Like Particles.

Subcell Biochem

December 2024

Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain.

Virus-like particles (VLPs) are formed by viral proteins that, when overexpressed, spontaneously self-assemble into particles that structurally are similar to infectious virus or subviral particles (e.g. the viral capsid).

View Article and Find Full Text PDF

SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!